3.2017 \(\int \frac{x^5}{\sqrt{a+\frac{b}{x^3}}} \, dx\)

Optimal. Leaf size=74 \[ \frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x^3}}}{\sqrt{a}}\right )}{4 a^{5/2}}-\frac{b x^3 \sqrt{a+\frac{b}{x^3}}}{4 a^2}+\frac{x^6 \sqrt{a+\frac{b}{x^3}}}{6 a} \]

[Out]

-(b*Sqrt[a + b/x^3]*x^3)/(4*a^2) + (Sqrt[a + b/x^3]*x^6)/(6*a) + (b^2*ArcTanh[Sqrt[a + b/x^3]/Sqrt[a]])/(4*a^(
5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0374576, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {266, 51, 63, 208} \[ \frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x^3}}}{\sqrt{a}}\right )}{4 a^{5/2}}-\frac{b x^3 \sqrt{a+\frac{b}{x^3}}}{4 a^2}+\frac{x^6 \sqrt{a+\frac{b}{x^3}}}{6 a} \]

Antiderivative was successfully verified.

[In]

Int[x^5/Sqrt[a + b/x^3],x]

[Out]

-(b*Sqrt[a + b/x^3]*x^3)/(4*a^2) + (Sqrt[a + b/x^3]*x^6)/(6*a) + (b^2*ArcTanh[Sqrt[a + b/x^3]/Sqrt[a]])/(4*a^(
5/2))

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^5}{\sqrt{a+\frac{b}{x^3}}} \, dx &=-\left (\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{x^3 \sqrt{a+b x}} \, dx,x,\frac{1}{x^3}\right )\right )\\ &=\frac{\sqrt{a+\frac{b}{x^3}} x^6}{6 a}+\frac{b \operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{a+b x}} \, dx,x,\frac{1}{x^3}\right )}{4 a}\\ &=-\frac{b \sqrt{a+\frac{b}{x^3}} x^3}{4 a^2}+\frac{\sqrt{a+\frac{b}{x^3}} x^6}{6 a}-\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\frac{1}{x^3}\right )}{8 a^2}\\ &=-\frac{b \sqrt{a+\frac{b}{x^3}} x^3}{4 a^2}+\frac{\sqrt{a+\frac{b}{x^3}} x^6}{6 a}-\frac{b \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+\frac{b}{x^3}}\right )}{4 a^2}\\ &=-\frac{b \sqrt{a+\frac{b}{x^3}} x^3}{4 a^2}+\frac{\sqrt{a+\frac{b}{x^3}} x^6}{6 a}+\frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x^3}}}{\sqrt{a}}\right )}{4 a^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.0375246, size = 97, normalized size = 1.31 \[ \frac{\sqrt{a} x^{3/2} \left (2 a^2 x^6-a b x^3-3 b^2\right )+3 b^2 \sqrt{a x^3+b} \tanh ^{-1}\left (\frac{\sqrt{a} x^{3/2}}{\sqrt{a x^3+b}}\right )}{12 a^{5/2} x^{3/2} \sqrt{a+\frac{b}{x^3}}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/Sqrt[a + b/x^3],x]

[Out]

(Sqrt[a]*x^(3/2)*(-3*b^2 - a*b*x^3 + 2*a^2*x^6) + 3*b^2*Sqrt[b + a*x^3]*ArcTanh[(Sqrt[a]*x^(3/2))/Sqrt[b + a*x
^3]])/(12*a^(5/2)*Sqrt[a + b/x^3]*x^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.024, size = 3567, normalized size = 48.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(a+b/x^3)^(1/2),x)

[Out]

1/12/((a*x^3+b)/x^3)^(1/2)/x*(a*x^3+b)/a^4*(2*I*3^(1/2)*(a*x^4+b*x)^(1/2)*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^
(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*x^4*a^3-18*I
*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/
3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))
/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^
(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*3^(1/2)*x^2*a^2*b^2+18*I*(-(I*3^(1/2)-3)*x*a/(-1+I
*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-
b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1
/2)*EllipticPi((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((
I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*3^(1/2)*x^2*a^2*b^2-18*I*(-(I*3^(1/2)-3)*x*a/(
-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*
x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3))
)^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2)
)/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*3^(1/2)*b^2-36*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x
+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^
(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi(
(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-
1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(1/3)*3^(1/2)*x*a*b^2+18*I*(-(I*3^(1/2)-3)*x*a/(-1+I
*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-
b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1
/2)*EllipticPi((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((
I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*3^(1/2)*b^2+18*(-(I*3^(1/2)-3)*
x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))
/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(
1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^
(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*x^2*a^2*b^2-3*I*3^(1/2)*(a*x^4+b*x)^(1/2)*(1/a^2*x*(-a*x+(-b*a^2)^(
1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*x
*a^2*b-18*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b
*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I
*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1
/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*x^2*a^2*b^2
-6*x^4*(a*x^4+b*x)^(1/2)*a^3*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I
*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)-36*(-b*a^2)^(1/3)*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*
x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))
^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF(
(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I
*3^(1/2)-3))^(1/2))*x*a*b^2+36*(-b*a^2)^(1/3)*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*
((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^
2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*a/(-1+
I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2
))/(I*3^(1/2)-3))^(1/2))*x*a*b^2+36*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1
/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)
-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2)
)/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(1/3
)*3^(1/2)*x*a*b^2+18*(-b*a^2)^(2/3)*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2
)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2
*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/
(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*b^2-18*(-b*a^2)
^(2/3)*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^
2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^
(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)
,(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*b^2+9*b*x*(a*x
^4+b*x)^(1/2)*a^2*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-
b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2))/(x*(a*x^3+b))^(1/2)/(I*3^(1/2)-3)/(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I
*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a+b/x^3)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.44765, size = 409, normalized size = 5.53 \begin{align*} \left [\frac{3 \, \sqrt{a} b^{2} \log \left (-8 \, a^{2} x^{6} - 8 \, a b x^{3} - b^{2} - 4 \,{\left (2 \, a x^{6} + b x^{3}\right )} \sqrt{a} \sqrt{\frac{a x^{3} + b}{x^{3}}}\right ) + 4 \,{\left (2 \, a^{2} x^{6} - 3 \, a b x^{3}\right )} \sqrt{\frac{a x^{3} + b}{x^{3}}}}{48 \, a^{3}}, -\frac{3 \, \sqrt{-a} b^{2} \arctan \left (\frac{2 \, \sqrt{-a} x^{3} \sqrt{\frac{a x^{3} + b}{x^{3}}}}{2 \, a x^{3} + b}\right ) - 2 \,{\left (2 \, a^{2} x^{6} - 3 \, a b x^{3}\right )} \sqrt{\frac{a x^{3} + b}{x^{3}}}}{24 \, a^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a+b/x^3)^(1/2),x, algorithm="fricas")

[Out]

[1/48*(3*sqrt(a)*b^2*log(-8*a^2*x^6 - 8*a*b*x^3 - b^2 - 4*(2*a*x^6 + b*x^3)*sqrt(a)*sqrt((a*x^3 + b)/x^3)) + 4
*(2*a^2*x^6 - 3*a*b*x^3)*sqrt((a*x^3 + b)/x^3))/a^3, -1/24*(3*sqrt(-a)*b^2*arctan(2*sqrt(-a)*x^3*sqrt((a*x^3 +
 b)/x^3)/(2*a*x^3 + b)) - 2*(2*a^2*x^6 - 3*a*b*x^3)*sqrt((a*x^3 + b)/x^3))/a^3]

________________________________________________________________________________________

Sympy [A]  time = 4.20993, size = 102, normalized size = 1.38 \begin{align*} \frac{x^{\frac{15}{2}}}{6 \sqrt{b} \sqrt{\frac{a x^{3}}{b} + 1}} - \frac{\sqrt{b} x^{\frac{9}{2}}}{12 a \sqrt{\frac{a x^{3}}{b} + 1}} - \frac{b^{\frac{3}{2}} x^{\frac{3}{2}}}{4 a^{2} \sqrt{\frac{a x^{3}}{b} + 1}} + \frac{b^{2} \operatorname{asinh}{\left (\frac{\sqrt{a} x^{\frac{3}{2}}}{\sqrt{b}} \right )}}{4 a^{\frac{5}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(a+b/x**3)**(1/2),x)

[Out]

x**(15/2)/(6*sqrt(b)*sqrt(a*x**3/b + 1)) - sqrt(b)*x**(9/2)/(12*a*sqrt(a*x**3/b + 1)) - b**(3/2)*x**(3/2)/(4*a
**2*sqrt(a*x**3/b + 1)) + b**2*asinh(sqrt(a)*x**(3/2)/sqrt(b))/(4*a**(5/2))

________________________________________________________________________________________

Giac [A]  time = 1.7181, size = 134, normalized size = 1.81 \begin{align*} -\frac{1}{12} \, b^{2}{\left (\frac{3 \, \arctan \left (\frac{\sqrt{\frac{a x^{3} + b}{x^{3}}}}{\sqrt{-a}}\right )}{\sqrt{-a} a^{2}} - \frac{5 \, a \sqrt{\frac{a x^{3} + b}{x^{3}}} - \frac{3 \,{\left (a x^{3} + b\right )} \sqrt{\frac{a x^{3} + b}{x^{3}}}}{x^{3}}}{{\left (a - \frac{a x^{3} + b}{x^{3}}\right )}^{2} a^{2}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a+b/x^3)^(1/2),x, algorithm="giac")

[Out]

-1/12*b^2*(3*arctan(sqrt((a*x^3 + b)/x^3)/sqrt(-a))/(sqrt(-a)*a^2) - (5*a*sqrt((a*x^3 + b)/x^3) - 3*(a*x^3 + b
)*sqrt((a*x^3 + b)/x^3)/x^3)/((a - (a*x^3 + b)/x^3)^2*a^2))